PII: S0040-4039(97)00249-9

Photoselective Bond Cleavage of Tricyclo[5.3.1.01,7]Undecane Derivatives. A Facile Entry to Carbocyclic Taxane [A,B] Ring System

Janine Cossy, Samir BouzBouz
Laboratoire de Chimie Organique, Associé au CNRS, ESPCI, 10 rue Vauquelin
75231 - Paris Cedex 05 - France

Abstract

The selective control cyclopropyl bond cleavage of tricyclo[5.3.1.0 ${ }^{1,7}$]undecan-2-one by photochemical electron transfer produces a new approach to the construction of the carbon skeleton of the $[\mathrm{A}, \mathrm{B}]$ ring system of the carbocyclic frame of taxane. © 1997 Published by Elsevier Science Ldd. All rights reserved.

The bicyclo[5.3.1]undecane ring system 1 is the carbon skeleton of the [A,B] ring system of the carbocyclic frame of taxol, which is a very promising antitumour drug, in use for the treatment of breast, head, neck and ovarian cancers ${ }^{1}$.

Cyclopropylcarbinyl rearrangement of bicyclic systems have been studied intensively ${ }^{2}$ and more recently tricyclic systems have been studied. The selective central cyclopropyl bond cleavage in tricyclo[5.3.1.0 ${ }^{1,7}$]undeca-2,4-dien-10-one by lead tetraacetate provided an approach to the construction of the carbocyclic frame $[\mathrm{A}, \mathrm{B}]$ ring of taxol ${ }^{3}$. This carbocyclic frame $[\mathrm{A}, \mathrm{B}]$ ring of taxol was obtained also by treatment of the tricyclo[5.3.1.0 $\left.{ }^{1,7}\right]$ undecanol system in acidic conditions ${ }^{4}$. We would like to report here that bicyclo[5.3.1]undecane ring systems can be obtained by cleavage of the central cyclopropyl bond of tricyclo[5.3.1.0 ${ }^{1,7}$] undecanones under photoelectron transfer conditions ${ }^{5}$, depending on the position of the carbonyl group. The study was achieved on ketones 2 and 6 . These ketones were respectively obtained from enones 1^{6} and 3^{7}. The tricyclic ketone 2 was obtained in one step by treatment of enone 1 with trimethylsulfoxonium iodide in DMSO^{8}, and ketone 6 was synthetized in three steps from the bicyclo[5.3.0]undec-1(7)-en-2-one 3. After reduction of the enone 3 by NaBH_{4} in the presence of CeCl_{3}, the allylic alcohol was cyclopropanated by using $\mathrm{CH}_{2} \mathrm{I}_{2}$ in the presence of $\mathrm{ZnEt}_{2}{ }^{9}$. The tricyclo[5.3.1.0 ${ }^{1,7}$]undecanol 5 was isolated and treated with PDC to produce the desired ketone 6.

Irradiation of $2\left(0.01\right.$ mole) in acetonitrile at 254 nm in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ (10 eq) and $\mathrm{LiClO}_{4}(1 \mathrm{eq})$ for 2 h led to the bicyclic ketone 7 with a yield of 65%. No trace of the ring expanded product was detected. On the contrary, the irradiation of the tricyclic ketone 6 under the same conditions led to the ring expanded product $8(60 \%)^{10}$ and to the 7 -methylbicyclo[5.3.0]alkanone $9(10 \%)^{10}$ as the minor product.

We have shown that the bicyclo[5.3.1]undecane ring system, that constitutes the [A,B] ring of taxane, can be easily obtained from the tricyclo[5.3.1.0 ${ }^{1,7}$] undecan-2-one 6 . These results are in agreement with the previous results we obtained in the bicyclo[n.1.0]alkanone series, in which the cleavage of the C - C bond of the cycloprane unit depends on the value of n^{5}.
Acknowledgment: One of us, S.B. thanks the CNRS for a grant.

References and Notes

1- a) Guénard, D.; Guéritte-Voegelin, F.; Potier, P. Acc. Chem. Res. 1993, 26, 160-167. b) Nicolaou, K. C.; Dai, W. M.; Guy, R. K. Angew. Chem. Int. Ed. Engl, 1994, 33, 15-46. c) Georg, G. I.; Chen, T. T.; Ojima, I.; Vyas, D. M. Taxane Anticancer Agents; American Cancer Society: San Diego, CA 1995.
2- a) Friedrich, E. C.; Saleh, M. A.; Winstein, S. I. Org. Chem. 1973, 38, 860-864. b) Friedrich, E. C.; Saleh, M. A. J. Am. Chem. Soc. 1973, 94, 2617-2623. c) Friedrich, E. C.; Cooper, J. D. Tetrahedron Lett. 1976, 17, 4397-4400. d) Friedrich, E. C.; Cooper, J. D. J. Org. Chem. 1979, 24, 4224-4229. e) Olah, G. A.; Prakash, G. K. S.; Rawdah, T. N. J. Org. Chem. 1980, 45, 965-969.
3- Kumar, P.; Rao, A. T.; Saravanan, K.; Pandey, B. Tetrahedron Lett. 1995, 36, 3397-3400.
4- Thielemann, W.; Schafer, H. J., Kotila, S. Tetrahedron 1995, 51, 12027-12034.
5- Cossy, J., Furet, N.; BouzBouz, S. Tetrahedron 1995, 51, 11751-11764.
6- Kovats, E.; Fürst, A.: Günthard, H. H. Helv. Chim. Acta 1954, 34, 534-542.
7- Brown, E.; Leriverend, P.; Conia, J. M. Tetrahedron Lett. 1966, 6115-6119.
8- Corey, E. J., Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353-1364.
9. Denmark, S. E.; Edwards, J. P. J. Org. Chem. 1991, 56, 6974-6981.

10- Compound 8 is constituted by one isomer. The relative stereochemistry between $\mathrm{H}-1$ and $\mathrm{H}-7$ could not be established by NOE experiments. IR (film): $1720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 0.9-2.5(\mathrm{~m}, 16 \mathrm{H}): 1.7(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}\right), 2.3(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CO}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 8: 16.5$ (t), 23.9 (t), 24.2 (t), 28.6 (t), 29.2 (t), 30.9 (t), 31.4 (t), 32.8 (d), 41.2 (t), 45.7 (d), 217.5 (s), MS (EI, 70 cV): m/z 166 (40), 148 (20), 122 (25), 111 (30), 97 (90). 81 (100), 67 (80). Compound 9 is constitucd by two inseparable isomers in a ratio 2 to d determined by ${ }^{1}$ H NMR spectra. For both isomers: IR (film): $1720 \mathrm{~cm}^{-1}$; MS (EI, 70 cV): m/2 166 (23), 151 (30), 122 (25), 111 (30). 97 (90). 81 (100), $67(80) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 0.9-2.9(\mathrm{~m}, 14 \mathrm{H})$, (Minor isoner: $1.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; Major isomer: $1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$], $2.6(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}-\mathrm{CO})$; Major isomer ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 22.9(\mathrm{t}), 23.5(\mathrm{t}), 23.7(\mathrm{t}), 26.2(\mathrm{t}), 27.5$ (q), 38.2 (t). 42.6 (t),
 (q), 43.6 (t), 43.9 (s), 44.0 (t), 44.5 (t), 59.4 (d), 213.4 (s).

